Carbon-13 Magnetic Shielding in Gaseous Carbon Dioxide

By KAROL JACKOWSKI

(Institute of Basic Problems in Chemistry, University of Warsaw, ul. Pasteura 02-093 Warszawa, Poland)

and WILLIAM T. RAYNES*

(Department of Chemistry, University of Sheffield, Sheffield S3 7HF)

Summary Studies of the ¹³C shielding of gaseous carbon dioxide over ranges of density and temperature reveal unexpected results for the dependence of the shielding on the internal molecular motion and the intermolecular interaction. THE nuclear magnetic shielding of a pure, imperfect gas can be expressed¹ as a power series in the molar volume $V_{\rm m}$ [equation (1)]. The coefficients σ_0 , σ_1 , σ_2 etc. are $\sigma = \sigma_0 + \sigma_1/V_{\rm m} + \sigma_2/V_{\rm m}^2 + \ldots$ (1) temperature dependent and it has been found for most compounds that the shielding varies linearly with the density so that σ_2 and higher coefficients can be ignored. The past two years have seen the publication of more than a dozen papers reporting experimental work founded on equation (1). Early work on ¹H, ¹⁹F, ³¹P, and ¹²⁹Xe resonance in gases has been extended and several papers report the detection of a density dependence for the shielding of three nuclear species not previously studied. They are boron,² carbon,²⁻⁶ and nitrogen.³ The two principal reasons for these investigations are (a) the possibility of using accurate values of σ_0 and its temperature dependence to provide information about the variation of the shielding with the internal co-ordinates of the molecule7 (the 'intramolecular shielding function') and (b) the hope that accurate values of σ_1 and its temperature dependence can lead to an understanding of how the shielding of a particular nucleus in a molecule depends on the distance to and the relative orientation of a perturbing molecule¹ (the 'intermolecular shielding function'). Further stimulus is provided by accurate ab initio calculation of the intramolecular and intermolecular shielding functions of simple systems.8-10

A compound for which gas phase ¹³C n.m.r. results have proved elusive is carbon dioxide. Jameson *et al.*³ found no detectable temperature dependence of σ_1 and obtained a temperature variation of 0.00054 p.p.m. deg⁻¹ for σ_0 which is only *ca.* 10% of those obtained for the two distinct ¹⁵N resonances in N₂O. A second problem concerns the composition of σ_1 . This comprises a bulk susceptibility contribution (σ_1)_b and a contribution σ_1 (A-A) which is due to interactions between pairs of A molecules. In the case of ¹³CO₂ gas this is expressed by equation (2). The value of

$$\sigma_1 = (\sigma_1)_{\rm b} + \sigma_1({}^{13}{\rm CO}_2 - {}^{13}{\rm CO}_2) \qquad \dots \qquad (2)$$

 $(\sigma_1)_{\rm b}$ for ¹³CO₂ gas in cylindrically shaped sample tubes with the external field transverse to the axis of the tubes is $-45 \cdot 0 \times 10^{-6} \, {\rm cm}^3 \, {\rm mol}^{-1}$. Our earlier study⁴ gave a value $\sigma_1 = -33(\pm 7) \times 10^{-6} \, {\rm cm}^3 \, {\rm mol}^{-1}$ for ¹³CO₂. Jameson et al.³ obtained $-2 \cdot 0988 \times 10^{-3} \, {\rm p.p.m.}$ amagat⁻¹ which is -47.2×10^{-6} cm³ mol⁻¹. It is evident that the two investigations yielded values of $\sigma_1({\rm ^{13}CO_2}{\rm ^{-13}CO_2})$ which appear to differ in sign although that of Jameson *et al.* is, in fact, zero within experimental error. The present experimental work was undertaken to investigate these matters further.

Five gaseous samples of ${\rm ^{13}CO_2},$ each having a different density, were prepared and their ¹³C nuclear shielding at -2, 22, 53, and 85 °C measured with respect to an appropriate external reference. The results are shown in the Table.† Assorted external references were necessary because of the wide temperature variation. For the two lower temperatures the results were put on the same scale, that relative to the ¹³C shielding of Me₄Si, by using the observations $\sigma(\text{liq. Me}_4\text{Si}, -2 \text{ °C}) - \sigma(3\% \text{ C}_6\text{H}_6 \text{ in CDCl}_3,$ $-2 \,^{\circ}C) = 129.224$ p.p.m. and $\sigma(liq. Me_4Si, 22 \,^{\circ}C) - \sigma \,(3\%)$ $\mathrm{C_6H_6}$ in $\mathrm{C_6D_6},\,22\ ^\circ\mathrm{C})\,=\,128{\cdot}566$ p.p.m. For the two higher temperatures the two results were placed on a scale with respect to the ¹³C shielding of the methyl carbon nucleus of Bu^tOH by using the observations $\sigma(Bu^{t}OH, 53 ^{\circ}C)$ $-\sigma(3\% C_6H_6 \text{ in } C_6D_6, 53 \text{ °C}) = 96.710 \text{ p.p.m. and} \sigma(\text{ButOH}, 85 \text{ °C}) -\sigma(3\% C_6H_6 \text{ in } \text{CD}_3\text{SOCD}_3, 85 \text{ °C}) =$ 98.900 p.p.m. Results converted to these references are also given in the Table. Least-squares fits were carried out to find the coefficients appropriate to equation (1) and the results are shown on the right hand side of the Table.

We first consider $\Delta \sigma_0$, the ¹³C shielding of ¹³CO₂ gas at zero density with respect to Me₄Si at -2 and 22 °C and with respect to Bu^tOH at 53 and 85 °C. The first requirement is to correct for the temperature dependence of the reference shielding. Unfortunately, this cannot yet be made for Bu^tOH. However, the correction can be made for Me₄Si. For Me₄Si a careful study¹¹ of the temperature dependence of the ¹³C shielding has given $\sigma(\text{liq}, \text{Me}_4\text{Si},$ $T\text{K}) -\sigma(\text{liq}. \text{Me}_4\text{Si}, 300 \text{ K}) = 0.013191(T-300) +$ $1.1907 \times 10^{-5}(T-300)^2 \text{ p.p.m.}$, from which one deduces that $\sigma(\text{liq}. \text{Me}_4\text{Si}, 22 °C) -\sigma(\text{liq}. \text{Me}_4\text{Si}, -2 °C) = 0.307$ p.p.m. Thus we finally obtain for ¹³CO₂ gas at zero density: $\sigma(22 °C) - \sigma(-2 °C) = + 0.078 \text{ p.p.m.}$ This is a rate of shielding change of +0.003 p.p.m. deg⁻¹ which is of

TABLE. Shielding constant differences $\Delta\sigma$ (in p.p.m.) for ${}^{13}\text{CO}_2$ gas at different densities and temperatures with respect to a number of references and (at the right) the coefficients appropriate to equation (1) obtained by least squares fits. $\Delta\sigma_0$ is the shielding difference of the gas at zero density and the temperature stated from pure liquid Me₄Si or pure liquid t-butane (methyl resonance) as indicated in column 2. Shielding differences relative to Me₄Si and t-butane in columns 3—7 were obtained by applying corrections to those relative to benzene given in these columns.

	Shielding difference	Density/g cm ⁻³						
Temp./°C		0.013	0.020	0.050	0.070	0.112	$\Delta\sigma_0/10^{-6}$	$\sigma_1/10^{-6} \text{ cm}^3 \text{ mol}^{-1}$
-2	$\Delta \sigma_{\mathbf{B}}^{\mathbf{a}}$	5.217	5.217	5.181	5.181	5.132		
	$\Delta \sigma_{\rm TMS}^{\ b}$	-124.007	-124.007	-124.043	-124.043	-124.092	-123.993 (±0.006)	$-38(\pm 4)$
+22	$\Delta \sigma_{\mathbf{B}}^{\mathbf{c}}$	4.332	4.332	4 ·289	4.289	4 ·247		
	$\Delta \sigma_{\mathrm{TMS}}^{\ \ \mathrm{b}}$	$-124 \cdot 234$	$-124 \cdot 234$	$-124 \cdot 277$	$-124 \cdot 277$	$-124 \cdot 319$	-124.222 (±0.006)	$-39(\pm 4)$
+53	$\Delta \sigma_{\mathbf{B}}^{\mathbf{c}}$	4.198	4.168	4.168	4.143	4.113		
	$\Delta \sigma_{ extbf{But}}^{ extbf{d}}$	-92.512	-92.542	-92.542	-92.567	-92.597	-92.512 (± 0.009)	$-34(\pm 6)$
+85	$\Delta \sigma_{\mathbf{B}}^{\mathbf{e}}$	5.193	5.145	5.145	5.145	5.108		
	$\Delta \sigma_{\mathbf{But}}^{\mathbf{d}}$	-93.707	-93.755	-93.755	-93.755	-93.792	$-93.719(\pm 0.015)$	$-28 (\pm 10)$

^a With respect to 3% C₆H₆ in CDCl₃: ^b W.r.t. pure liq. Me₄Si: ^c W.r.t. 3% C₆H₆ in C₆H₆: ^d W.r.t. the methyl carbon of Bu^tOH. ^e W.r.t. 3% C₆H₆ in (CD₃)₂SO.

 13 C chemical shifts were measured with a JEOL PFT 100 n.m.r. spectrometer. Gas samples were contained in sealed 5 mm o.d. sample tubes inserted in 10 mm o.d. sample tubes containing the references for -2 and +22 °C. All samples containing Me₄Si and Bu⁴OH were sealed.

opposite sign and several times larger than that obtained by Jameson et al.³ (see above). The result is quite unexpected since it is usual for shielding to diminish at higher temperature under the influence of increased rotational distortion. Jameson et al.¹² did find a similarly anomalous temperature dependence for σ_0 in the ³¹P shielding of PH₃. However, they attributed the anomaly to the influence of HPH angle-bending which will contribute to $d\sigma/dT$ in first order. Such an explanation is not possible for a molecule as symmetric as CO_2 .

At a superficial level σ_1 does appear to become less negative with increasing temperature as can be seen from

- ¹ W. T. Raynes, A. D. Buckingham, and H. J. Bernstein, J. Chem. Phys., 1962, 36, 3481.
 ² A. K. Jameson, J. W. Moyer, and C. J. Jameson, J. Chem. Phys., 1978, 68, 2873.
 ³ C. J. Jameson, A. K. Jameson, H. Parker, S. M. Cohen, and C.-L. Lee, J. Chem. Phys., 1978, 68, 2861.
 ⁴ K. Jackowski and W. T. Raynes, Mol. Phys., 1977, 34, 465.
 ⁵ K. Jackowski, E. Dayan, and W. T. Raynes, Mol. Phys., 1977, 34, 1189.
 ⁶ E. L. A. DRUMERGER, Conversion of E. M. Marvita, Conversion of Conv

- ⁹ K. Jackowski, E. Dayan, and W. T. Kaynes, Mol. Phys., 1977, 34, 1189.
 ⁶ F. H. A. Rummens, and F. M. Mouritz, Canad. J. Chem., 1977, 55, 3021.
 ⁷ C. J. Jameson, J. Chem. Phys., 1977, 66, 4977; *ibid.*, 67, 2814.
 ⁸ G. Riley and W. T. Raynes, to be published.
 ⁹ K. Jackowski, A. J. Sadlej, and W. T. Raynes, Chem. Phys. Letters, 1978, 54, 128.
 ¹⁰ A. J. Sadlej, M. Zaucer, and A. Ažman, Mol. Phys., 1978, 35, 1397.
 ¹¹ C. L. Lameson, personal communication.

- C. J. Jameson, personal communication.
 C. J. Jameson, A. K. Jameson, and H. Parker, J. Chem. Phys., 1978, 68, 2868.

the Table. However, the experimental precision is still not quite adequate enough to discern a trend of σ_1 with respect to temperature. Nevertheless the results for σ_1 are in general agreement with our earlier result⁴ of $-33(\pm7)$ imes 10^{-6} cm³ mol⁻¹ and, after correction for $(\sigma_1)_b$, lead to a value for $\sigma_1({}^{13}\text{CO}_2 - {}^{13}\text{CO}_2)$ of *ca.* +10 × 10⁻⁶ cm³ mol⁻¹. Again this is a quite unexpected result since σ_1 is invariably found to be negative after correcting the susceptibility (*i.e.* intermolecular interaction decreases the shielding).

(Received, 4th June 1979; Com. 583.)